Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Modern programming languages offer special syntax and semantics for logical fork-join parallelism in the form of parallel loops, allowing them to be nested, e.g., a parallel loop within another parallel loop. This expressiveness comes at a price, however: on modern multicore systems, realizing logical parallelism results in overheads due to the creation and management of parallel tasks, which can wipe out the benefits of parallelism. Today, we expect application programmers to cope with it by manually tuning and optimizing their code. Such tuning requires programmers to reason about architectural factors hidden behind layers of software abstractions, such as task scheduling and load balancing. Managing these factors is particularly challenging when workloads are irregular because their performance is input-sensitive. This paper presents HBC, the first compiler that translates C/C++ programs with high-level, fork-join constructs (e.g., OpenMP) to binaries capable of automatically controlling the cost of parallelism and dealing with irregular, input-sensitive workloads. The basis of our approach is Heartbeat Scheduling, a recent proposal for automatic granularity control, which is backed by formal guarantees on performance. HBC binaries outperform OpenMP binaries for workloads for which even entirely manual solutions struggle to find the right balance between parallelism and its costs.more » « less
-
On any modern computer architecture today, parallelism comes with a modest cost, born from the creation and management of threads or tasks. Today, programmers battle this cost by manually optimizing/tuning their codes to minimize the cost of parallelism without harming its benefit, performance. This is a difficult battle: programmers must reason about architectural constant factors hidden behind layers of software abstractions, including thread schedulers and memory managers, and their impact on performance, also at scale. In languages that support higher-order functions, the battle hardens: higher order functions can make it difficult, if not impossible, to reason about the cost and benefits of parallelism. Motivated by these challenges and the numerous advantages of high-level languages, we believe that it has become essential to manage parallelism automatically so as to minimize its cost and maximize its benefit. This is a challenging problem, even when considered on a case-by-case, application-specific basis. But if a solution were possible, then it could combine the many correctness benefits of high-level languages with performance by managing parallelism without the programmer effort needed to ensure performance. This paper proposes techniques for such automatic management of parallelism by combining static (compilation) and run-time techniques. Specifically, we consider the Parallel ML language with task parallelism, and describe a compiler pipeline that embeds “potential parallelism” directly into the call-stack and avoids the cost of task creation by default. We then pair this compilation pipeline with a run-time system that dynamically converts potential parallelism into actual parallel tasks. Together, the compiler and run-time system guarantee that the cost of parallelism remains low without losing its benefit. We prove that our techniques have no asymptotic impact on the work and span of parallel programs and thus preserve their asymptotic properties. We implement the proposed techniques by extending the MPL compiler for Parallel ML and show that it can eliminate the burden of manual optimization while delivering good practical performance.more » « less
-
Aldrich, Jonathan; Salvaneschi, Guido (Ed.)While programmers know that memory representation of data structures can have significant effects on performance, compiler support to optimize the layout of those structures is an under-explored field. Prior work has optimized the layout of individual, non-recursive structures without considering how collections of those objects in linked or recursive data structures are laid out. This work introduces Marmoset, a compiler that optimizes the layouts of algebraic datatypes, with a special focus on producing highly optimized, packed data layouts where recursive structures can be traversed with minimal pointer chasing. Marmoset performs an analysis of how a recursive ADT is used across functions to choose a global layout that promotes simple, strided access for that ADT in memory. It does so by building and solving a constraint system to minimize an abstract cost model, yielding a predicted efficient layout for the ADT. Marmoset then builds on top of Gibbon, a prior compiler for packed, mostly-serial representations, to synthesize optimized ADTs. We show experimentally that Marmoset is able to choose optimal layouts across a series of microbenchmarks and case studies, outperforming both Gibbon’s baseline approach, as well as MLton, a Standard ML compiler that uses traditional pointer-heavy representations.more » « less
-
Jaejin Lee, Kunal Agrawal (Ed.)Programming languages using functions on collections of values, such as map, reduce, scan and filter, have been used for over fifty years. Such collections have proven to be particularly useful in the context of parallelism because such functions are naturally parallel. However, if implemented naively they lead to the generation of temporary intermediate collections that can significantly increase memory usage and runtime. To avoid this pitfall, many approaches use "fusion" to combine operations and avoid temporary results. However, most of these approaches involve significant changes to a compiler and are limited to a small set of functions, such as maps and reduces. In this paper we present a library-based approach that fuses widely used operations such as scans, filters, and flattens. In conjunction with existing techniques, this covers most of the common operations on collections. Our approach is based on a novel technique which parallelizes over blocks, with streams within each block. We demonstrate the approach by implementing libraries targeting multicore parallelism in two languages: Parallel ML and C++, which have very different semantics and compilers. To help users understand when to use the approach, we define a cost semantics that indicates when fusion occurs and how it reduces memory allocations. We present experimental results for a dozen benchmarks that demonstrate significant reductions in both time and space. In most cases the approach generates code that is near optimal for the machines it is running on.more » « less
-
Recent work showed that compiling functional programs to use dense, serialized memory representations for recursive algebraic datatypes can yield significant constant-factor speedups for sequential programs. But serializing data in a maximally dense format consequently serializes the processing of that data, yielding a tension between density and parallelism. This paper shows that a disciplined, practical compromise is possible. We present Parallel Gibbon, a compiler that obtains the benefits of dense data formats and parallelism. We formalize the semantics of the parallel location calculus underpinning this novel implementation strategy, and show that it is type-safe. Parallel Gibbon exceeds the parallel performance of existing compilers for purely functional programs that use recursive algebraic datatypes, including, notably, abstract-syntax-tree traversals as in compilers.more » « less
An official website of the United States government
